4.5 Article

Mechanical ventilation-induced pneumoprotein CC-16 vascular transfer in rats:: effect of KGF pretreatment

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajplung.00384.2001

关键词

acute lung injury/acute respiratory distress syndrome; ventilation-induced lung injury; 16-kDa Clara cell; keratinocyte growth factor; pneumoproteinemia

向作者/读者索取更多资源

After air-blood barrier injury, pneumoproteins specific to lung epithelial distal airspaces reaching the bloodstream are putative markers of lung hyperpermeability. The contribution of mechanical ventilation (MV) to this leakage is unknown. To explore this issue, 16-kDa Clara cell protein (CC-16) concentration was quantified in bronchoalveolar lavages (BALFs) and/or sera of rats first exposed either to ambient air or to 48 h of hyperoxia-induced acute lung injury and then ventilated for 2 h according to one of the following strategies: 1) spontaneous ventilation (SV), 2) very-low-volume high PEEP (VLVHP, where PEEP is positive end-expiratory pressure), 3) low-volume zero PEEP, 4) moderate-volume low PEEP, and 5) high-volume zero PEEP (HVZP). Results show that total proteins in BALFs increased with time and MV, with little impact from hyperoxia preexposure. CC-16 content decreased in BALFs but increased in the bloodstream during MV, suggesting intravascular leakage. Lung overdistension may result either from high-volume (HVZP) or high-PEEP (VLVHP) MV, and it was the most potent inducer of CC-16 leakage (P < 0.05 vs. SV). In the VLVHP group, pretreatment with keratinocyte growth factor was efficient in reducing blood CC-16 transfer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据