4.6 Article Proceedings Paper

Exploring complex systems in chemical engineering - the multi-scale methodology

期刊

CHEMICAL ENGINEERING SCIENCE
卷 58, 期 3-6, 页码 521-535

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0009-2509(02)00577-8

关键词

multi-scale complex system; structure; multi-phase flow; variational criterion

向作者/读者索取更多资源

Challenges in quantitative design of chemical processes mainly reside in their complex structures, which are usually multi-scale in nature, and are difficult to analyze by the average approach as commonly used. The multi-scale methodology has thus received more and more attention in recent years. There are three kinds of multi-scale methodology: descriptive for distinguishing the phenomenological difference of structures at different scales; and correlative for formulating phenomena at higher scales by analyzing the mechanisms at lower scales; and variational for revealing the dominant mechanisms of the structure aid the relationship between the scales. This paper presents an overview of multi-scale methodologies with emphasis on the variational methodology, and proposes the possibility of establishing a generalized multi-scale methodology, effective for analyzing single-phase turbulent flow in pipe, gas-solid two-phase fluidization, and gas-solid-liquid three-phase fluidization. The variational multi-scale methodology consists of the following steps: Phenomenological resolution with respect to scales of structures. Identification of dominant mechanisms. Establishment of conservation conditions with respect to different scales and correlation between different scales. Formulation of variational criterion to identify what dominates the stability of structure and what compromise exists between different dominant mechanisms. Integration between conservation conditions with stability conditions. (C) 2003 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据