4.7 Review

Redox control on the cell surface: Implications for HIV-1 entry

期刊

ANTIOXIDANTS & REDOX SIGNALING
卷 5, 期 1, 页码 133-138

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/152308603321223621

关键词

-

向作者/读者索取更多资源

Proteins that work outside cells nearly always contain disulfide bonds. The prevailing view is that these bonds have been added during evolution to enhance protein stability. Recent evidence suggests that disulfide bonds can also control protein function. Certain secreted proteins contain one or more disulfide bonds that can control function by breaking and reforming in a controlled way. This review focuses on disulfide exchange events on the cell surface, with a particular reference to two proteins involved in HIV-1 infection. The primary HIV-1 receptor on immune cells, CD4, and the viral envelope glycoprotein, gp120, play a central role in HIV-1 entry. Redox change in a disulfide bond or bonds in one or both of these proteins appears to be important for HIV-1 entry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据