4.0 Article

A homogeneous G protein-coupled receptor ligand binding assay based on time-resolved fluorescence resonance energy transfer

期刊

ASSAY AND DRUG DEVELOPMENT TECHNOLOGIES
卷 6, 期 4, 页码 543-550

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/adt.2008.152

关键词

-

向作者/读者索取更多资源

Fluorescence resonance energy transfer (FRET) has emerged as a powerful tool to the study of protein-protein interactions, such as receptor-ligand binding. However, the application of FRET to the study of G protein-coupled receptors (GPCRs) has been limited by the method of labeling receptor with fluorescence probes. Here we described a novel time-resolved (TR)-FRET method to study GPCR-ligand binding by using human complement 5a (C5a) receptor (C5aR) as a model system. Human C5aR was expressed in human embryonic kidney 293 cells with a hemagglutinin (HA) epitope at the N-terminus. Purified human C5a was labeled with terbium chelate and used as the fluorescence donor. Monoclonal anti-HA antibody conjugated with Alexa Fluor 488 was used as the fluorescence acceptor. Robust FRET signal was observed when the labeled ligand and C5aR membrane were mixed in the presence of the conjugated anti-HA antibody. This FRET signal was specific and saturable. C5a binding affinity to C5aR measured by the FRET assay was consistent with the data as determined by competition binding analysis using radiolabeled C5a. The FRET assay was also used to determine affinity of C5aR antagonists by competition binding analysis, and the data are similar to those from radioligand binding studies. Compared to the commonly used radioligand binding assay, this TR-FRET-based assay provides a nonradioactive, faster, and sensitive homogeneous assay format that could be easily adapted to high-throughput screening. The principle of this assay should also be applicable to other GPCRs, especially to those receptors with peptide or protein ligands.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据