4.5 Article

A model of fluid flow in solid tumors

期刊

ANNALS OF BIOMEDICAL ENGINEERING
卷 31, 期 2, 页码 181-194

出版社

BIOMEDICAL ENGINEERING SOC AMER INST PHYSICS
DOI: 10.1114/1.1540103

关键词

solid tumors; capillary flow; drug delivery; boundary-element modeling

向作者/读者索取更多资源

Solid tumors consist of a porous interstitium and a neoplastic vasculature composed of a network of capillaries with highly permeable walls. Blood flows across the vasculature from the arterial entrance point to the venous exit point, and enters the tumor by convective and diffusive extravasation through the permeable capillary walls. In this paper, an integrated theoretical model of the flow through the tumor is developed. The flow through the interstitium is described by Darcy's law for an isotropic porous medium, the flow along the capillaries is described by Poiseuille's law, and the extravasation flux is described by Starling's law involving the pressure on either side of the capillaries. Given the arterial, the venous, and the ambient pressure, the problem is formulated in terms of a coupled system of integral and differential equations for the vascular and interstitial pressures. The overall hydrodynamics is described in terms of hydraulic conductivity coefficients for the arterial and venous flow rates whose functional form provides an explanation for the singular behavior of the vascular resistance observed in experiments. Numerical solutions are computed for an idealized case where the vasculature is modeled as a single tube, and charts of the hydraulic conductivities are presented for a broad range of tissue and capillary wall conductivities. The results in the physiological range of conditions are found to be in good agreement with laboratory observations. It is shown that the assumption of uniform interstitial pressure is not generally appropriate, and predictions of the extravasation rate based on it may carry a significant amount of error. (C) 2003 Biomedical Engineering Society.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据