4.7 Article

Regulation of the mammalian cell cycle:: a model of the G1-to-S transition

期刊

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
卷 284, 期 2, 页码 C349-C364

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00066.2002

关键词

positive feedback; phosphorylation; nonlinear dynamics; bifurcation; simulation

向作者/读者索取更多资源

We have formulated a mathematical model for regulation of the G(1)-to-S transition of the mammalian cell cycle. This mathematical model incorporates the key molecules and interactions that have been identified experimentally. By subdividing these critical molecules into modules, we have been able to systematically analyze the contribution of each to dynamics of the G(1)-to-S transition. The primary module, which includes the interactions between cyclin E (CycE), cyclin-dependent kinase 2 (CDK2), and protein phosphatase CDC25A, exhibits dynamics such as limit cycle, bistability, and excitable transient. The positive feedback between CycE and transcription factor E2F causes bistability, provided that the total E2F is constant and the retinoblastoma protein (Rb) can be hyperphosphorylated. The positive feedback between active CDK2 and cyclin-dependent kinase inhibitor (CKI) generates a limit cycle. When combined with the primary module, the E2F/Rb and CKI modules potentiate or attenuate the dynamics generated by the primary module. In addition, we found that multisite phosphorylation of CDC25A, Rb, and CKI was critical for the generation of dynamics required for cell cycle progression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据