4.5 Article

Effects of tree crown structure on biomass of the epiphytic fern Polypodium scouleri (Polypodiaceae) in redwood forests

期刊

AMERICAN JOURNAL OF BOTANY
卷 90, 期 2, 页码 255-261

出版社

WILEY
DOI: 10.3732/ajb.90.2.255

关键词

epiphyte biomass; Polypodiaceae; Polypodium scouleri; Sequoia sempervirens; temperate rain forest; tree structure; vascular epiphytes

向作者/读者索取更多资源

Redwood forests contain some of the largest and most structurally complex trees on Earth. The most abundant vascular epiphyte in these forests is the fern Polypodium scouleri (Polypodiaceae). We measured dimensions of all 765 P. scouleri mats on 32 trees (27 Sequoia sempervirens, 5 Picea sitchensis). Eighteen P. scouleri mats from 11 trees were randomly selected for removal and dissection in the laboratory. The total fern mat mass consisted of live fronds (3.3%), dead fronds (2.4%), live rhizomes (4.2%), dead rhizomes (8.9%), roots (34.4%), humus (28.0%), and debris (18.8%). We used multiple regression analysis to develop equations for estimation of fern masses, and we applied these equations to undisturbed fern mats on the 32 trees. Individual trees supported up to 742 kg dry mass of P. scouleri mats. These are the highest whole-tree epiphyte masses ever reported. We also quantified crown structure and counted the number of vascular plant species occurring as epiphytes on each tree. Very large, complex trees had more fern mat mass and higher vascular epiphyte species richness than smaller, simpler trees. Desiccation-sensitive organisms dependent on water stored in fern mats may be unable to survive in managed redwood forests lacking large, complex trees with abundant P. scouleri.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据