4.7 Article

Gene transfer of manganese superoxide dismutase extends islet graft function in a mouse model of autoimmune diabetes

期刊

DIABETES
卷 52, 期 2, 页码 387-393

出版社

AMER DIABETES ASSOC
DOI: 10.2337/diabetes.52.2.387

关键词

-

向作者/读者索取更多资源

Islet transplantation is a promising cure for diabetes. However, inflammation, allorejection, and recurrent antoimmune damage all may contribute to early graft loss. Pancreatic islets express lower levels of antioxidant genes than most other tissues of the body, and beta-cells in particular are sensitive to oxidative damage. Therefore, damage from oxidative stress may pose a major obstacle to islet replacement therapy in that both the islet isolation and transplantation processes generate oxygen radicals. To determine whether antioxidant gene overexpression in isolated pancreatic islets can prevent oxidative damage and prolong islet function after transplantation, we used the NOD mouse model to study oxidative stress encountered during both transplantation and autoimmune attack. We transferred an antioxidant gene, manganese superoxide dismutase (MnSOD), by adenoviral infection into isolated islets that were transplanted into streptozotocin-treated NODscid recipient mice. Functioning islet grafts were subsequently exposed to diabetogenic spleen cells and monitored until graft failure. The results show that islet grafts overexpressing MnSOD functioned similar to50% longer than control grafts. This significant prolongation of graft function suggests that the antioxidant activity of MnSOD is beneficial to transplanted islet survival and may be used in combination with other strategies aimed at islet graft protection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据