4.1 Article Proceedings Paper

Actin-based motility as a self-organized system: mechanism and reconstitution in vitro

期刊

COMPTES RENDUS BIOLOGIES
卷 326, 期 2, 页码 161-170

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/S1631-0691(03)00067-2

关键词

actin polymerisation; treadmilling; cell locomotion; filament branching

类别

向作者/读者索取更多资源

Site-directed actin polymerisation in response to signalling is responsible for the formation of cell protrusions. These elementary 'actin-based motility processes' are involved in cell locomotion, cell metastasis, organ morphogenesis and microbial pathogenesis. We have reconstituted actin-based propulsive movement of particles of various sizes and geometries (rods, microspheres) in a minimum motility medium containing five pure proteins. The ATP-supported treadmilling of actin filaments, regulated by Actin Depolymerizing Factor (ADF/cofilin), profilin and capping proteins provides the thermodynamic basis for sustained actin-based movement. Local activation of Arp2/3 complex at the surface of the particle promotes autocatalytic barbed end branching of filaments, generating a polarized arborescent array. Barbed end growth of branched filaments against the surface generates a propulsive force and is eventually arrested by capping proteins. Understanding the mechanism of actin-based movement requires elucidation of the biochemical properties and mode of action of Arp2/3 complex in filament branching, in particular the role of ATP binding and hydrolysis in Arp2/3, and a physical analysis of the movement of functionalised particles. Because the functionalisation of the particle by an activator of Arp2/3 complex (N-WASP or the Listeria protein ActA) and the concentrations of effectors in the medium are controlled, the reconstituted motility assay allows an analysis of the mechanism of force production at the mesoscopic and molecular levels. To cite this article: M.-E Carlier et al., C. R. Biologies 326 (2003). (C) 2003 Academie des sciences/Editions scientifiques et medicales Elsevier SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据