4.5 Article

Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JMEMS.2002.807467

关键词

contact angle; electrowetting; electrowetting on dielectric (EWOD); lab-on-a-chip; microfluidics; micro total analysis; system (mu TAS); surface tension

向作者/读者索取更多资源

This paper reports the completion of four fundamental fluidic operations considered essential to build digital microfluidic circuits, which can be used for lab-on-a-chip or micro total analysis system (muTAS): 1) creating, 2) transporting, 3) cutting, and 4) merging liquid droplets, all by electrowetting, i.e., controlling the wetting property of the surface through electric potential. The surface used in this report is, more specifically, an electrode covered with dielectrics, hence, called electrowetting-on-dielectric (EWOD). All the fluidic movement is confined between two plates, which we call parallel-plate channel, rather than through closed channels or on open surfaces. While transporting and merging droplets are easily verified, we discover that there exists a design criterion for a given set of materials beyond which the droplet simply cannot be cut by EWOD mechanism. The condition for successful cutting is theoretically analyzed by examining the channel gap, the droplet size and the degree of contact angle change by electrowetting on dielectric (EWOD). A series of experiments is run and verifies the criterion. A smaller channel gap, a larger droplet size and a larger change in the contact angle enhance the necking of the droplet, helping the completion of the cutting process. Creating droplets from a pool of liquid is highly related to cutting, but much more challenging. Although droplets may be created by simply pulling liquid out of a reservoir, the location of cutting is sensitive to initial conditions and turns out unpredictable. This problem of an inconsistent cutting location is overcome by introducing side electrodes, which pull the liquid perpendicularly to the main fluid path before activating the cutting. All four operations are carried out in air environment at 25 V-dc applied voltage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据