4.4 Article

β-lactamase genes of the penicillin-susceptible Bacillus anthracis sterne strain

期刊

JOURNAL OF BACTERIOLOGY
卷 185, 期 3, 页码 823-830

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.185.3.823-830.2003

关键词

-

资金

  1. NIAID NIH HHS [R01 AI033537, AI 33537] Funding Source: Medline

向作者/读者索取更多资源

Susceptibility to penicillin and other beta-lactam-containing compounds is a common trait of Bacillus anthracis. beta-lactam agents, particularly penicillin, have been used worldwide to treat anthrax in humans. Nonetheless, surveys of clinical and soil-derived strains reveal penicillin G resistance in 2 to 16% of isolates tested. Bacterial resistance to beta-lactam agents is often mediated by production of one or more types of beta-lactamases that hydrolyze the beta-lactam ring, inactivating the antimicrobial agent. Here, we report the presence of two beta-lactamase (bla) genes in the penicillin-susceptible Sterne strain of B. anthracis. We identified bla1 by functional cloning with Escherichia coli. bla1 is a 927-nucleotide (nt) gene predicted to encode a protein with 93.8% identity to the type I beta-lactamase gene of Bacillus cereus. A second gene, bla2, was identified by searching the unfinished B. anthracis chromosome sequence database of The Institute for Genome Research for open reading frames (ORFs) predicted to encode beta-lactamases. We found a partial ORF predicted to encode a protein with significant similarity to the carboxy-terminal end of the type I beta-lactamase of B. cereus. DNA adjacent to the 5' end of the partial ORF was cloned using inverse PCR. bla2 is a 768-nt gene predicted to encode a protein with 92% identity to the B. cereus type II enzyme. The bla1 and bla2 genes confer ampicillin resistance to E. coli. and Bacillus subtilis when cloned individually in these species. The MICs of various antimicrobial agents for the E. coli clones indicate that the two beta-lactamase genes confer different susceptibility profiles to E. coli; bla1 is a penicillinase, while bla2 appears to be a cephalosporinase. The beta-galactosidase activities of B. cereus group species harboring bla promoter-lacZ transcriptional fusions indicate that bla1 is poorly transcribed in B. anthracis, B. cereus, and B. thuringiensis. The bla2 gene is strongly expressed in B. cereus and B. thuringiensis and weakly expressed in B. anthracis. Taken together, these data indicate that the bla1 and bla2 genes of the B. anthracis Sterne strain encode functional beta-lactamases of different types, but gene expression is usually not sufficient to confer resistance to beta-lactam agents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据