4.8 Article

Developmental loss of miniature N-methyl-D-aspartate receptor currents in NR2A knockout mice

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0335786100

关键词

-

资金

  1. NEI NIH HHS [T32 EY007115, 5T32EY07115] Funding Source: Medline
  2. NIDA NIH HHS [5T32DA07290, T32 DA007290] Funding Source: Medline
  3. NINDS NIH HHS [NS32290] Funding Source: Medline

向作者/读者索取更多资源

The N-methyl-(D)-aspartate (NMDA) glutamate receptor (NMDAR), long implicated in developmental plasticity, shows decay time kinetics that shorten postnatally as NR2A subunits are added to the receptor. Neither the mechanism nor immediate effect of this change is known. We studied developing NMDAR currents by using visual neurons in slices from NR2A knockout (NR2AKO) and WT mice. Both strains show increased dendritic levels of synaptic density scaffolding protein PSD-95 with age. Dendritic levels of NR2A increased at the same time in WT and immunoprecipitated with PSD-95. PSD-95/NMDAR binding was significantly decreased in the NR2AKO. Moreover, NMDAR miniature currents (minis) were lost and rise times of NMDAR evoked currents increased in mutant mice. Age-matched WT cells showed NR2A-rich receptors predominating in minis, yet slow NR2B mediated currents persisted in evoked currents. Disrupting photoreceptor activation of retinal ganglion cells eliminated increases in PSD-95 and NR2A in superior collicular dendrites of WT mice and slowed the loss of miniature NMDAR currents in NR2AKOs. These data demonstrate that NMDARs that respond to single quantal events mature faster during development by expressing the NR2A subunit earlier than NMDARs that respond to evoked release. We hypothesize that NR2A-rich NMDARs may be localized to the center of developing synapses by an activity-dependent process that involves the targeting of PSD-95 to the postsynaptic density. Neonatal receptors become restricted to perisynpatic or extrasynaptic sites, where they participate primarily in evoked currents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据