4.6 Article

Lead-based systems as suitable anode materials for Li-ion batteries

期刊

ELECTROCHIMICA ACTA
卷 48, 期 6, 页码 615-621

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0013-4686(02)00730-2

关键词

lead; lead oxide; rechargeable lithium batteries; anodic materials

向作者/读者索取更多资源

Three lead-based materials formed by PbO2, PbO and Pb as main phases were prepared by following different synthetic procedures and tested as anodic materials in Li-ion batteries by using potentiostatic and galvanostatic methods. While the reduction of Pb(IV) to Pb(II) takes place in a single step, that of Pb(H) to Ph is a complex process involving several steps. Both reduction reactions are irreversible. Lead, whether electrochemically or chemically formed, undergoes an electrochemical reaction with lithium that over the 1.0-0.0 V potential range yields LixPb alloys (0 less than or equal to x less than or equal to 4.4). The anodic and cathodic potentiostatic curves exhibit various signals that account for: (i) the formation of different intermediates with variable lithium contents; (ii) the reversibility of the alloying/de-alloying processes; (iii) the increase in complexity of such processes as the oxidation state of lead in them decreases. This results in capacity fading with cycling, particularly in the samples having Pb as the main component. One way of avoiding the capacity loss on cycling involves depositing the active material on lead sheets from spraying suspensions. These coatings exhibit a good capacity retention, which can be ascribed to the formation of a LixPb layer at the active material/substrate interface that facilitates electron and ion transfer across the electrode. (C) 2002 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据