4.6 Article

A 14-amino acid sequence with a β-turn structure is required for apical membrane sorting of the rat ileal bile acid transporter

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 278, 期 6, 页码 4000-4009

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M207163200

关键词

-

资金

  1. NICHD NIH HHS [HD20632] Funding Source: Medline

向作者/读者索取更多资源

The rat ileal sodium-dependent bile acid transporter (Asbt) is a polytopic membrane glycoprotein, which is specifically expressed on the apical domain of the ileal brush-border membrane. In the present study, an essential 14-amino acid (aa 335-348) sorting signal was defined on the cytoplasmic tail of Asbt with two potential phosphorylation sites motifs for casein kinase II ((335)SFQE) and protein kinase C (PKC) ((TNK)-T-339). Two-dimension NMR spectra analysis demonstrated that a tetramer, (340)NKGF, which overlaps with the potential PKC site within the 14-mer signal sequence, adopts a type I beta-turn conformation. Replacement of the potential phosphorylation residue Ser(335) and Thr(339) with alanine or deletion of either the 4 ((335)SFQE) or 10 as (338-348, containing (339)TNKGF) from the C terminus of Asbt resulted in a significantly decreased initial bile acid transport activity and increased the basolateral distribution of the mutants by 2-3-fold compared with that of wild type Asbt. Deletion of the entire last 14 amino acids (335-348) from the C terminus of Asbt abolished the apical expression of the truncated Asbt. Moreover, replacement of the cytoplasmic tail of the liver basolateral membrane protein, Na+/taurocholate cotransporting polypeptide, with the 14-mer peptide tail of Asbt redirected the chimera to the apical domain. In contrast, a chimera consisting of the 14-mer peptide of Asbt fused with green fluorescent protein was expressed in an intracellular transport vesicle-like distribution in transfected Madin-Darby canine kidney and COS 7 cells. This suggests that the apical localization of the 14-mer peptide requires a membrane anchor to support proper targeting. The results from biological reagent treatment and low temperature shift (20 degreesC) suggests that Asbt follows a transport vesicle-mediated apical sorting pathway that is brefeldin A-sensitive and insensitive to protein glycosylation, monensin treatment, and low temperature shift.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据