4.6 Article

ω-conotoxin CVID inhibits a pharmacologically distinct voltage sensitive calcium channel associated with transmitter release from preganglionic nerve terminals

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 278, 期 6, 页码 4057-4062

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M209969200

关键词

-

向作者/读者索取更多资源

Neurotransmitter release from preganglionic parasympathetic neurons is resistant to inhibition by selective antagonists of L-, N-, P/Q-, R-, and T-type calcium channels. In this study, the effects of different omega-conotoxins from genus Conus were investigated on current flow-through cloned voltage-sensitive calcium channels expressed in Xenopus oocytes and nerve-evoked transmitter release from the intact preganglionic cholinergic nerves innervating the rat submandibular ganglia. Our results indicate that omega-conotoxin CVID from Conus catus inhibits a pharmacologically distinct voltage-sensitive calcium channel involved in neurotransmitter release, whereas w-conotoxin MVIIA had no effect. omega-Conotoxin CVID and MVIIA inhibited depolarization-activated Ba2+ currents recorded from oocytes expressing N-type but not L- or R-type calcium channels. High affinity inhibition of the CVID-sensitive calcium channel was enhanced when position 10 of the w-conotoxin was occupied by the smaller residue lysine as found in CVID instead of an arginine as found in MVIIA. Given that relatively small differences in the sequence of the N-type calcium channel alpha(1B) subunit can influence omega-conotoxin access (Feng, Z. P:, Hamid, J., Doering, C., Bosey, G. M., Snutch, T. P., and Zamponi, G. W. (2001) J. Biol. Chem. 276, 15728-15735), it is likely that the calcium channel in preganglionic nerve terminals targeted by CVID is a N-type (Ca(v)2.2) calcium channel variant.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据