4.7 Article

Accuracy of spectroscopic constants of diatomic molecules from ab initio calculations

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 118, 期 6, 页码 2539-2549

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1533032

关键词

-

向作者/读者索取更多资源

The basis-set convergence of cc-pVXZ basis sets is investigated for the MP2 and CCSD equilibrium bond distances and harmonic frequencies of BH, HF, CO, N-2, and F-2 by comparing with explicitly correlated R12 results. The convergence is, in general, smooth but slow-for example, for harmonic frequencies at the quadruple-zeta level, the basis-set error is typically 7 cm(-1); at the sixtuple-zeta level, it is about 2 cm(-1). For most constants, the convergence can be accelerated by using a two-point linear extrapolation procedure. Equilibrium bond distances, harmonic frequencies, anharmonic contributions, vibration-rotation interaction constants, and rotational constants for the vibrational ground state have been calculated for the same set of molecules using standard wave function and basis-set levels of ab initio theory. The accuracy of the calculated constants has been established by carrying out a statistical analysis of the deviations with respect to experiment. The largest errors for bond distances and harmonic frequencies calculated at the core-corrected CCSD(T)/cc-pV6Z level are 0.4 pm and 13.4 cm(-1), respectively. Much smaller errors occur for the anharmonic contributions. (C) 2003 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据