4.7 Article

Algorithms and novel applications based on the isokinetic ensemble. I. Biophysical and path integral molecular dynamics

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 118, 期 6, 页码 2510-2526

出版社

AIP Publishing
DOI: 10.1063/1.1534582

关键词

-

向作者/读者索取更多资源

In this paper (Paper I) and a companion paper (Paper II), novel new algorithms and applications of the isokinetic ensemble as generated by Gauss' principle of least constraint, pioneered for use with molecular dynamics 20 years ago, are presented for biophysical, path integral, and Car-Parrinello based ab initio molecular dynamics. In Paper I, a new extended system version of the isokinetic equations of motion that overcomes the ergodicity problems inherent in the standard approach, is developed using a new theory of non-Hamiltonian phase space analysis [M. E. Tuckerman , Europhys. Lett. 45, 149 (1999); J. Chem. Phys. 115, 1678 (2001)]. Reversible multiple time step integrations schemes for the isokinetic methods, first presented by Zhang [J. Chem. Phys. 106, 6102 (1997)] are reviewed. Next, holonomic constraints are incorporated into the isokinetic methodology for use in fast efficient biomolecular simulation studies. Model and realistic examples are presented in order to evaluate, critically, the performance of the new isokinetic molecular dynamic schemes. Comparisons are made to the, now standard, canonical dynamics method, Nose-Hoover chain dynamics [G. J. Martyna , J. Chem. Phys. 97, 2635 (1992)]. The new isokinetic techniques are found to yield more efficient sampling than the Nose-Hoover chain method in both path integral molecular dynamics and biophysical molecular dynamics calculations. In Paper II, the use of isokinetic methods in Car-Parrinello based ab initio molecular dynamics calculations is presented. (C) 2003 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据