4.8 Article

Repairing of rabbit skull defect by dehydrothermally crosslinked collagen sponges incorporating transforming growth factor β1

期刊

JOURNAL OF CONTROLLED RELEASE
卷 88, 期 1, 页码 55-64

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0168-3659(02)00481-9

关键词

collagen sponge; TGF-beta 1; controlled release; dehydrothermal crosslinking; bone repair

向作者/读者索取更多资源

Collagen sponges of various biodegradabilities were prepared by dehydrothermal crosslinking at 140 degreesC for different time periods. When the collagen sponges were radioiodinated and implanted subcutaneously into the back of mice, the radioactivity remaining at the implanted site decreased with time; the longer the time of dehydrothermal crosslinking, the slower the radioactivity decrement. The radioactivity following the subcutaneous implantation of collagen sponges incorporating I-125-labeled transforming growth factor (TGF)-beta1 also decreased with time. The time profile of both the radioactivity remainings was in good accordance to each other, irrespective of the crosslinking time. This indicates that the TGF-beta1 incorporated in the sponges was released as a result of sponge biodegradation. Potential of collagen sponges incorporating 0.1 mug of TGF-beta1 in repairing the defect of rabbit skulls was evaluated in a stress-unloaded state. Bone repairing was induced by application of the collagen sponges incorporating 0.1 mug of TGF-beta1 whereas that of free TGF-beta1 at the same dose and TGF-beta1-free, empty collagen sponges were ineffective. The bone defect was histologically closed by the bone tissue newly formed 6 weeks after application. Bone mineral density (BMD) analysis revealed that the collagen sponge incorporating TGF-beta1 enhanced the BMD value at the bone defect to a significantly great extent compared with other agents. A maximum enhancement of BMD was observed for the collagen sponge incorporating TGF-beta1 which was prepared by dehydrothermal crosslinking for 6 h. It was concluded that the TGF-beta1 incorporated in the collagen sponge was released in a biologically active form as a result of sponge biodegradation, resulting in enhanced bone repairing at the skull defect. It is possible that for too slowly degraded sponges, the remaining physically impairs the bone repairing at the skull defect. Induction of bone repairing would not be achieved through a rapid release of TGF-beta1 from too fast-degraded sponge. (C) 2002 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据