4.6 Article

Theory of strain relaxation in heteroepitaxial systems

期刊

PHYSICAL REVIEW B
卷 67, 期 7, 页码 -

出版社

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevB.67.075316

关键词

-

向作者/读者索取更多资源

We introduce a general approach to calculating the morphological consequences of coherent strain relaxation in heteroepitaxial thin films based on lattice statics using linear elasticity. The substrate and film are described by a simple cubic lattice of atoms with localized interactions. The boundary conditions at concave and convex corners that appear as a result of this construction, those along straight interfacial segments, and the governing equations are obtained from a variational calculation applied to a discretized form of the total elastic energy. The continuum limit of the equations and the boundary conditions along straight boundaries reproduces standard results of elasticity theory, but the boundary conditions at corners have no such analog. Our method enables us to calculate quantities such as the local strain energy density for any surface morphology once the lattice misfit and the elastic constants of the constituent materials are specified. The methodology is illustrated by examining the strain, displacement, and energies of one-dimensional strained vicinal surfaces. We discuss the effects of epilayer thickness on the energy of various step configurations and suggest that coupling between surface and substrate steps should affect the equilibration of the surface toward the bunched state.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据