4.7 Review

Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/S0921-5093(02)00259-9

关键词

wear resistant coatings; TiN and (Ti,Al)N; multilayer coatings; multicomponent coatings; cathodic arc deposition; sputtering

向作者/读者索取更多资源

We review the status of (Ti,Al)N based coatings obtained by various physical vapor deposition (PVD) techniques and compare their properties. PVD techniques based on sputtering and cathodic arc methods are widely used to deposit wear resistant (Ti,Al)N coatings. These techniques were further modified to improve the metal ionization rate and to eliminate macrodroplets from plasma streams. We summarize manufacture of target/cathode, substrate materials for deposition of coatings, deposition parameters, and the effect of deposition parameters on the physical and mechanical properties of (Ti,Al)N coatings. It is shown that (Ti,Al)N coatings by PVD enhance the wear, thermal, and oxidation resistance of a wide variety of tool materials. We discuss the wear resistant properties of (Ti,Al)N for various machining applications as compared with coatings such as TiN, Ti(C,N) and (Ti,Zr)N. High hardness (similar to28-32 GPa), relatively low residual stress (similar to5 GPa), superior oxidation resistance, high hot hardness, and low thermal conductivity make (Ti,Al)N coatings most desirable in dry machining and machining of abrasive alloys at high speeds. Multicomponent coatings based on different metallic and nonmetallic elements combine the benefit of individual components leading to a further refinement of coating properties. Alloying additions such as Cr and Y drastically improve the oxidation resistance, Zr and V improve the wear resistance, whereas, Si increases the hardness and resistance to chemical reactivity of the film. Addition of boron improves the abrasive wear behavior of Ti-Al based coatings due to the formation of TiB2 and BN phases depending on the deposition conditions. Hafnium based nitrides and carbides have potential for resistance to flank and crater wear. The presence of a large number of interfaces between individual layers of a multilayered structure results in a drastic increase in hardness and strength. (Ti,Al)N multilayer super lattice coatings with lattice periodicity of 5 - 10 nm allow creation of coatings with different properties than PVD deposited single layered thick coatings with columnar grain structure. A range of (Ti,Al)N based multilayers containing layers of (Ti,Al)CN, (Ti,Nb)N, TiN, AlN/TiN, CrN, Mo and WC are also reviewed. It is now possible to design new wear resistant or functional coatings based on a multilayer or a multicomponent system to meet the demanding applications of advanced materials. (C) 2002 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据