4.8 Article

Defective presentation of the CD1d1-restricted natural Va14Ja18 NKT lymphocyte antiqen caused by β-D-glucosylceramide synthase deficiency

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0430327100

关键词

-

资金

  1. NIAID NIH HHS [R21 AI042284, AI42284, R01 AI042284, R56 AI046455, R01 AI046455, AI46455] Funding Source: Medline

向作者/读者索取更多资源

Va14Ja18 natural T (NKT) cells play an immunoregulatory role, which is controlled by a self glycolipid(s) presented by CD1d. Although the synthetic antigen alpha-D-galactosylceramide (alpha-D-GalCer) stimulates all Va14Ja18 NKT cells, alpha-anomeric D-glycosyl-ceramides are currently unknown in mammals. We have used beta-D-GalCer-deficient mice and beta-D-glucosylceramide (beta-D-GlcCer)-deficient cells to define the chemical nature of a natural NKT cell antigen. beta-D-GalCer-deficient mice exhibit normal NKT cell development and function, and cells from these animals potently stimulate NKT hybridomas. In striking contrast, the same hybridomas fail to react to CD1d1 expressed by a beta-D-GlcCer-deficient cell line. Importantly, human beta-D-GlcCer synthase cDNA transfer, and hence the biosynthesis of beta-D-GlcCer, restores the recognition of mutant cells expressing CD1d1 by the Va14Ja18 NKT hybridomas. Additionally, suppression Of beta-D-GlcCer synthesis inhibits antigen presentation to Va14Ja18 NKT cells. The possibility that beta-D-GlcCer itself is the natural NKT cell antigen was excluded because it was unable to activate NKT hybridomas in a cell-free antigen-presentation assay. These findings suggest that beta-D-GlcCer may play an important role in generating and/or loading a natural Va14Ja18 NKT antigen.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据