4.8 Review

Proton-coupled O-O activation on a redox platform bearing a hydrogen-bonding scaffold

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 125, 期 7, 页码 1866-1876

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja028548o

关键词

-

资金

  1. NIGMS NIH HHS [GM 47274] Funding Source: Medline

向作者/读者索取更多资源

Porphyrin architectures bearing a hydrogen-bonding scaffold have been synthesized. The H-bond pendant allows proton-coupled electron transfer (PCET) to be utilized as a vehicle for effecting catalytic O-O bond activation chemistry. Suzuki cross-coupling reactions provide a modular synthetic strategy for the attachment of porphyrins to a rigid xanthene or dibenzofuran pillar bearing the H-bond pendant. The resulting HPX (hanging porphyrin xanthene) and HPD (hanging porphyrin dibenzofuran) systems permit both the orientation and acid-base properties of the hanging H-bonding group to be controlled. Comparative reactivity studies for the catalase-like disproportionation of hydrogen peroxide and the epoxidation of olefins by the HPX and HPD platforms with acid and ester hanging groups reveal that the introduction of a proton-transfer network, properly oriented to a redox-active platform, can orchestrate catalytic O-O bond activation. For the catalase and epoxidation reaction types, a marked reactivity enhancement is observed for the xanthene-bridged platform appended with a pendant carboxylic acid group, establishing that this approach can yield superior catalysts to analogues that do not control both proton and electron inventories.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据