4.6 Article

Maximization of hydrogen production ability in high-density suspension of Rhodovulum sulfidophilum cells using intracellular poly(3-hydroxybutyrate) as sole substrate

期刊

BIOTECHNOLOGY AND BIOENGINEERING
卷 81, 期 4, 页码 474-481

出版社

JOHN WILEY & SONS INC
DOI: 10.1002/bit.10494

关键词

PHB degradation; light; hydrogen; cell density; Rhodovulum; PHB-negative mutant

向作者/读者索取更多资源

Growth of and hydrogen production by wildtype (WT) Rhodovulum sulfidophilum were compared with those by one of its mutants lacking the poly(3-hydroxybutyrate) (PHB) biosynthesis ability (PNM2). During phototrophic growth under aerobic conditions with fixed illumination, changes in the extinction coefficient and PHB content of WT and PNM2 cells revealed interference of light penetration by PHB. WT cells synthesized PHB at an early stage of the cultivation. PHB degradation after exhaustion of acetate during the cultivation of WT resulted in a decrease of the extinction coefficient. The hydrogen production rate under anaerobic conditions with fixed illumination was examined in WT and PNM2 cell suspensions at different densities. The hydrogen production rate was determined not by the light penetration but by the kinds of hydrogen donors and the density of suspension. The highest value of the rate of hydrogen production from PHB, 33.0 ml/l/h, was improved compared with 26.6 ml/l/h, which was the highest value in hydrogen production from succinate. Under the same illumination, conversion to hydrogen from PHB is more efficient than that from succinate, which is one of the best substrates for hydrogen production. These results suggest that the hydrogen production rate can be maximized in the hydrogen production system based on PHB degradation, which is achieved in high-density suspension under external-substrate-depleted conditions after aerobic cultivation in the presence of an excess amount of acetate. (C) 2003 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据