4.7 Article

Nitric oxide enhances angiogenesis via the synthesis of vascular endothelial growth factor and cGMP after stroke in the rat

期刊

CIRCULATION RESEARCH
卷 92, 期 3, 页码 308-313

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.RES.0000056757.93432.8C

关键词

nitric oxide; phosphodiesterase type 5 inhibitor; vascular endothelial growth factor; angiogenesis; cerebral ischemia

资金

  1. NHLBI NIH HHS [R01HL64766] Funding Source: Medline
  2. NINDS NIH HHS [R01 NS35504, P01 NS23393, NS43324] Funding Source: Medline

向作者/读者索取更多资源

We investigated the effects of NO on angiogenesis and the synthesis of vascular endothelial growth factor (VEGF) in a model of focal embolic cerebral ischemia in the rat. Compared with control rats, systemic administration of an NO donor, DETANONOate, to rats 24 hours after stroke significantly enlarged vascular perimeters and increased the number of proliferated cerebral endothelial cells and the numbers of newly generated vessels in the ischemic boundary regions, as evaluated by 3-dimensional laser scanning confocal microscopy. Treatment with DETANONOate significantly increased VEGF levels in the ischemic boundary regions as measured by ELISA. A capillary-like tube formation assay was used to investigate whether DETANONOate increases angiogenesis in ischemic brain via activation of soluble guanylate cyclase. DETANONOate-induced capillary-like tube formation was completely inhibited by a soluble guanylate cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ). Blocking VEGF activity by a neutralized antibody against VEGF receptor 2 significantly attenuated DETANONOate-induced capillary-like tube formation. Moreover, systemic administration of a phosphodiesterase type 5 inhibitor (Sildenafil) to rats 24 hours after stroke significantly increased angiogenesis in the ischemic boundary regions. Sildenafil and an analog of cyclic guanosine monophosphate (cGMP) also induced capillary-like tube formation. These findings suggest that exogenous NO enhances angiogenesis in ischemic brain, which is mediated by the NO/cGMP pathway. Furthermore, our data suggest that NO, in part via VEGF, may enhance angiogenesis in ischemic brain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据