4.7 Article

Control of directionality in L5 integrase-mediated site-specific recombination

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 326, 期 3, 页码 805-821

出版社

ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD
DOI: 10.1016/S0022-2836(02)01475-4

关键词

mycobacteriophage L5; phage integration; site-specific recombination; phage excision; excise

资金

  1. NIGMS NIH HHS [GM59968] Funding Source: Medline

向作者/读者索取更多资源

Mycobacteriophage L5 is a temperate phage that forms lysogens in Mycobacterium smegmatis. These lysogens carry an integrated L5 prophage inserted at a specific chromosomal location and undergo subsequent excision during induction of lytic growth. Both the integrative and excisive site-specific recombination events are catalyzed by the phageencoded tyrosine integrase (Int-L5) and require the host-encoded protein, mIHE The directionality of these recombination events is determined by a second phage-encoded protein, Excise, the product of gene 36 (Xis-L5); integration occurs efficiently in the absence of Xis-L5 while excision is dependent upon it. We show here that Xis-L5 binds to attR DNA, introduces a DNA bend, and facilitates the formation of an intasome-R complex. This complex, which requires mIHF, Xis-L5 and Int-L5, readily recombines with a second intasome formed by Int-L5, mIHF and attL DNA (intasome-L) to generate the attP and attB products of excision. Xis-L5 also strongly inhibits Int-L5-mediated integrative recombination but does not prevent either the protein-DNA interactions that form the attP intasome (intasome-P) or the capture of attB, but acts later in the reaction presumably by preventing the formation of a recombinagenic synaptic intermediate. The mechanism of action of Xis-L5 appears to be purely architectural, influencing the assembly of protein-DNA structures solely through its DNA-binding and DNA-bending properties. (C) 2003 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据