4.7 Review

Solvation effects and driving forces for protein thermodynamic and kinetic cooperativity: How adequate is native-centric topological modeling?

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 326, 期 3, 页码 911-931

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/S0022-2836(02)01434-1

关键词

calorimetric cooperativity; single-exponential kinetics; unfolding; chevron plot; desolvation barrier

向作者/读者索取更多资源

What energetic and solvation effects underlie the remarkable two-state thermodynamics and folding/unfolding kinetics of small single-domain proteins? To address this question, we investigate the folding and unfolding of a hierarchy of continuum Langevin dynamics models of chymotrypsin inhibitor 2. We find that residue-based additive G (o) over bar -like contact energies, although native-centric, are by themselves insufficient for protein-like calorimetric two-state cooperativity. Further native biases by local conformational preferences are necessary for protein-like thermodynamics. Kinetically, however, even models with both contact and local native-centric energies do not produce simple two-state chevron plots. Thus a model protein's thermodynamic cooperativity is not sufficient for simple two-state kinetics. The models tested appear to have increasing internal friction with increasing native stability, leading to chevron rollovers that typify kinetics that are commonly referred to as non-two-state. The free energy profiles of these models are found to be sensitive to the choice of native contacts and the presumed spatial ranges of the contact interactions. Motivated by explicit-water considerations, we explore recent treatments of solvent granularity that incorporate desolvation free energy barriers into effective implicit-solvent intraprotein interactions. This additional feature reduces both folding and unfolding rates vis-A-vis that of the corresponding models without desolvation barriers, but the kinetics remain non-two-state. Taken together, our observations suggest that interaction mechanisms more intricate than simple Go-like constructs and pairwise additive solvation-like contributions are needed to rationalize some of the most basic generic protein properties. Therefore, as experimental constraints on protein chain models, requiring a consistent account of protein-like thermodynamic and kinetic cooperativity can be more stringent and productive for some applications than simply requiring a model heteropolymer to fold to a target structure. (C) 2003 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据