4.6 Article

c-Myc is required for the glucose-mediated induction of metabolic enzyme genes

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 278, 期 8, 页码 6588-6595

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M208011200

关键词

-

向作者/读者索取更多资源

Glucose exerts powerful effects on hepatocyte gene transcription by mechanisms that are incompletely understood. c-Myc regulates hepatic glucose metabolism by increasing glycolytic enzyme gene transcription while concomitantly decreasing gluconeogenic and ketogenic enzyme gene expression. However, the molecular mechanisms by which c-Myc exerts these effects is not known. In this study, the glucose-mediated induction of L-type pyruvate kinase and glucose-6-phosphatase mRNA levels was diminished by maneuvers involving recombinant adenoviral vectors that interfere with (i) c-Myc protein levels by antisense expression or (ii) c-Myc function through a dominant-negative Max protein. These results were obtained using both HL1C rat hepatoma cells and primary rat hepatocytes. Furthermore, a decrease in c-Myc abundance reduced glucose production in HL1C cells, presumably by decreasing glucose-6-phosphatase activity. The repression of hormone-activated phosphoenolpyruvate carboxykinase gene transcription by glucose was not affected by a reduction in c-Myc levels. The basal mRNA levels for L-pyruvate kinase and glucose-6-phosphatase were not altered to any significant degree by adenoviral treatment. Furthermore, adenoviral overexpression of the c-Myc protein induced glucose-6-phosphatase mRNA in the absence of glucose stimulation. We conclude that multiple mechanisms exist to communicate the glucose-derived signal and that c-Myc has a key role in the hepatic glucose signaling pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据