4.6 Article

PepN, the major Suc-LLVY-AMC-hydrolyzing enzyme in Escherichia coli, displays functional similarity with downstream processing enzymes in archaea and eukarya -: Implications in cytosolic protein degradation

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 278, 期 8, 页码 5548-5556

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M207926200

关键词

-

向作者/读者索取更多资源

Succinyl-Leu-Leu-Val-Tyr-7-amido-4-methylcoumarin (Suc-LLVY-AMC), a fluorogenic endopeptidase substrate, is used to detect 20 S proteasomal activity from Archaea to mammals. An o-phenanthroline-sensitive Suc-LLVY-AMC hydrolyzing activity was detected in Escherichia coli although it lacks 20 S proteasomes. We identified PepN, previously characterized as the sole alanine aminopeptidase in E. coli, to be responsible for the hydrolysis of Suc-LLVY-AMC. PepN is an aminoendopeptidase. First, extracts from an ethyl methanesulfonate-derived PepN mutant, 9218, did not cleave Suc-LLVY-AMC and L-Ala-para-nitroanilide (pNA). Second, biochemically purified PepN cleaves a wide variety of both aminopeptidase and endopeptidase substrates, and L-Ala-pNA is cleaved more efficiently than other substrates. Studies with bestatin, an aminopeptidase-specific inhibitor, suggest differences in the mechanisms of cleavage of aminopeptidase and endopeptidase substrates. Third, PepN hydrolyzes whole proteins, casein and albumin. Finally, an E. coli strain with a targeted deletion in PepN also lacks the ability to cleave Suc-LLVY-AMC and L-Ala-pNA, and expression of wild type PepN in this mutant rescues both activities. In addition, we identified a low molecular weight Suc-LLVY-AMC-cleaving peptidase in Mycobacterium smegmatis, a eubacteria harboring 20 S proteasomes, to be an aminopeptidase homologous to E. coli PepN, by mass spectrometry analysis. Sequence-based homologues of PepN include well characterized aminopeptidases, e.g. Tricorn interacting factors F2 and F3 in Archaea and puromycin-sensitive aminopeptidase in mammals. However, our results suggest that eubacterial PepN and its homologues displaying aminoendopeptidase activities may be functionally similar to enzymes important in downstream processing of proteins in the cytosol: Tricorn-F1-F2-F3 complex in Archaea and TPPII/Multicorn in eukaryotes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据