4.7 Article

The electrostatic potential profile along a biased molecular wire: A model quantum-mechanical calculation

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 118, 期 8, 页码 3756-3763

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1539863

关键词

-

向作者/读者索取更多资源

We study the electrostatic potential of a molecular wire bridging two metallic electrodes in the limit of weak contacts. With the use of a tight-binding model including a fully three-dimensional treatment of the electrostatics of the molecular junction, the potential is shown to be poorly screened, dropping mostly along the entire molecule. In addition, we observe pronounced Friedel oscillations that can be related to the breaking of electron-hole symmetry. Our results are in semiquantitative agreement with recent state-of-the-art ab initio calculations and point to the need of a three-dimensional treatment to properly capture the behavior of the electrostatic potential. Based on these results, current-voltage curves are calculated within the Landauer formalism. It is shown that Coulomb interaction partially compensates the localization of the charges induced by the electric field and consequently tends to suppress zones of negative differential resistance. (C) 2003 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据