4.6 Article

Identification of residues critical for regulation of protein stability and the transactivation function of the hypoxia-inducible factor-1α by the von Hippel-Lindau tumor suppressor gene product

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 278, 期 9, 页码 6816-6823

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M209297200

关键词

-

向作者/读者索取更多资源

Under normoxic conditions the hypoxia-inducible factor-1alpha (HIF-1alpha) protein is targeted for degradation by the von Hippel-Lindau (pVHL) tumor suppressor protein acting as an E3 ubiquitin ligase. Binding of pVHL to HIF-1alpha is dependent on hydroxylation of specific proline residues by O-2-dependent prolyl 4-hydroxylases. Upon exposure to hypoxia the hydroxylase activity is inhibited, resulting in stabilization of HIF-1alpha protein levels and activation of transcription of target genes. One of the two critical proline residues, Pro 563 in mouse HIF-1a, is located within a bifunctional domain, the N-terminal transactivation domain (N-TAD), which mediates both pVHL-dependent degradation at normoxia and transcriptional activation at hypoxia. Here we have identified two N-TAD residues, Tyr(564) and He 565, which, in addition to Pro(563), were critical for pVHL-mediated degradation at normoxia. We have also identified D568A/D569A/D570A, F571A, and L573A as mutations of the N-TAD that abrogated binding to pVHL both in vitro and in vivo, and constitutively stabilized N-TAD against degradation. Moreover, the mutations Y564G, L556A/L558A, and F571A/L573A drastically reduced the transactivation function of either the isolated N-TAD or full-length HIF-1alpha in hypoxic cells. Interestingly, the P563A mutant exhibited a constitutively active and potent transactivation function that was enhanced by functional interaction with the transcriptional coactivator protein CREB-binding protein. In conclusion, we have identified by mutation analysis several residues that are critical for either one or both of the interdigitated and conditionally regulated degradation and transactivation functions of the N-TAD of HIF-1alpha.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据