4.2 Article

Ethanol-induced cephalic apoptosis requires phospholipase C-dependent intracellular calcium signaling

期刊

出版社

WILEY
DOI: 10.1097/01.ALC.0000056615.34253.A8

关键词

prenatal alcohol exposure; calcium; phospholipase C; apoptosis; embryo

资金

  1. NIAAA NIH HHS [AA11085, AA12057] Funding Source: Medline
  2. NIEHS NIH HHS [ES09090, ES07015] Funding Source: Medline

向作者/读者索取更多资源

Background: Although the ability of ethanol to elicit neural crest cell apoptosis is well documented, the initial target of ethanol in these cells, and the biochemical pathway leading to their apoptosis, have yet to be determined. Recent work in preimplantation mouse embryos demonstrates that ethanol induces a phospholipase-C (PLC)-dependent calcium transient that mediates ethanol's effects. We tested whether a similar effect on calcium and PLC is involved in ethanol-induced neural crest apoptosis. Methods: Chicken embryos were collected and loaded with Fluo-3-AM to assess the effects of ethanol on intracellular calcium levels. Pharmacological agents were used to determine the sources and mechanism of intracellular calcium increases. In separate experiments, embryos were treated in ovo with pharmacological modulators of calcium signaling prior to ethanol exposure, and resulting levels of cell death were assessed by using the vital dye acridine orange. Results: Ethanol exposure caused a localized increase in intracellular calcium levels in embryonic neural folds within 15 see of ethanol exposure. Ethanol-induced apoptosis was specifically blocked by chelation of intracellular calcium before ethanol exposure. Pretreatment with the PLC inhibitor U73122 blocked ethanol-induced apoptosis as well as the intracellular calcium transient. Depletion of extracellular calcium resulted in a partial block of ethanol-induced apoptosis. Conclusions: Ethanol exposure alters calcium signaling within the neurulation-stage chicken embryo in a PLC-dependent manner. Increases in intracellular calcium and PLC activity are necessary for ethanol's induction of apoptosis within cephalic populations. These effects likely represent an early and crucial event in the pathway leading to ethanol-induced cell death.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据