4.8 Article

Lead sorption onto ferrihydrite. 2. Surface complexation modeling

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 37, 期 5, 页码 915-922

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es025794r

关键词

-

向作者/读者索取更多资源

Few studies have combined molecular- and macroscopic-scale investigations with surface complexation model (SCM) development to predict trace metal speciation and partitioning in aqueous systems over a broad range of conditions. In this work, an extensive collection of new macroscopic and spectroscopic data was used to assess the ability of the modified triple-layer model (TILM) to predict single-solute lead(II) [Pb(II)] sorption onto 2-line ferrihydrite in NaNO3 solutions as a function of pH, ionic strength, and concentration. Regression of constant-pH isotherm data together with potentiometric titration and pH edge data was a much more rigorous test of the TLM than fitting pH edge data alone. When combined with spectroscopic data, the choices of feasible surface species/site types were limited to a few. In agreement with the spectroscopic data, very good fits of the isotherm data were obtained with a two-species, one-site model using the bidentate-mononuclear/monodentate-mononuclear species pairs, (equivalent toFeO)(2)Pb/equivalent toFeOHPb(2+) and (equivalent toFeO)(2)Pb/equivalent toFeOPb(+)-NO3-. Regressing edge data in the absence of isotherm and spectroscopic data resulted in a fair number of surface-species/site-type combinations that provided acceptable fits of the edge data but unacceptable fits of the isotherm data. Surprisingly, best-fit equilibrium constants for the Pb(II) surface complexes required adjustment outside the pH range of 4.5-5.5 in order to fit the isotherm data. In addition, a surface activity term was needed to reduce the ionic strength dependence of sorption for the species pair, (equivalent toFeO)(2)Pb/equivalent toFeOHPb(2+). In light of this, the ability of existing SCMs to predict Pb(II) sorption onto 2-line ferrihydrite over a wide range of conditions seems questionable. While many advances have been made over the past decade, much work still needs to be done in fine-tuning the thermodynamic framework and databases for the SCMs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据