4.7 Article

Correlation between impaired dexterity and corticospinal tract dysgenesis in congenital hemiplegia

期刊

BRAIN
卷 126, 期 -, 页码 732-747

出版社

OXFORD UNIV PRESS
DOI: 10.1093/brain/awg069

关键词

cerebral palsy; pyramidal tract; finger movement; grip-lift synergy

向作者/读者索取更多资源

One of the most devastating consequences of early corticospinal lesions is the impaired dexterity that results in a noticeable deficit while manipulating small objects. One purpose of the present study was to investigate the extent to which a deficit in the coordination of fingertip forces when grasping and lifting an object between the thumb and index finger could account for the impaired dexterity in patients with congenital hemiplegia (CH). A second objective was to examine whether, in these patients, deficits in skilled hand movements are correlated with the importance of structural damage to the corticospinal tract. The scaling and coordination of fingertip forces during precision grip was investigated in 16 CH patients (aged 8-19 years) and 16 age- and sex-matched control subjects. Proprioception, stereognosis, pressure sensitivity and motor upper limb function (including digital and manual dexterity) were also assessed quantitatively. The structural damage of the corticospinal tract was estimated by measuring the cross-sectional area of cerebral peduncles with MRI and by calculating an index of symmetry between the two peduncles. In CH patients, a large number of parameters measured during the grip-lift task were significantly different when compared with those found in control subjects. Among those, the duration of the preloading and loading phases was significantly longer in CH patients. In addition, both the dissimilarity and time-shift between the profiles of the grip and load force rates, quantified with the cross-correlation method, were also significantly larger in CH patients; the time-shift was strongly correlated with impaired dexterity. These findings suggest that impaired dextrous finger movements in CH patients may specifically result from their inability to ensure a precise synergy between fingertip forces while manipulating an object. Finally, the finding that the time-shift also correlated with the corticospinal tract dysgenesis, as estimated with the cerebral peduncle asymmetry, argues in favour of a critical role of the corticospinal system in the temporal coordination between different muscles involved in dextrous hand movements. Both digital and manual dexterity were also altered in the non-paretic hand of CH patients. This deficit may reveal the contribution of the lesioned hemisphere to the control of ipsilateral skilled finger movements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据