4.5 Article

A generic geometric transformation that unifies a wide range of natural and abstract shapes

期刊

AMERICAN JOURNAL OF BOTANY
卷 90, 期 3, 页码 333-338

出版社

WILEY
DOI: 10.3732/ajb.90.3.333

关键词

modeling; Superformula

向作者/读者索取更多资源

To study forms in plants and other living organisms, several mathematical tools are available, most of which are general tools that do not take into account valuable biological information. In this report I present a new geometrical approach for modeling and understanding various abstract, natural, and man-made shapes. Starting from the concept of the circle, I show that a large variety of shapes can be described by a single and simple geometrical equation, the Superformula. Modification of the parameters permits the generation of various natural polygons. For example, applying the equation to logarithmic or trigonometric functions modifies the metrics of these functions and all associated graphs. As a unifying framework, all these shapes are proven to be circles in their internal metrics, and the Superformula provides the precise mathematical relation between Euclidean measurements and the internal non-Euclidean metrics of shapes. Looking beyond Euclidean circles and Pythagorean measures reveals a novel and powerful way to study natural forms and phenomena.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据