4.2 Article

Neuronal assemblies: Single cortical neurons are obedient members of a huge orchestra

期刊

BIOPOLYMERS
卷 68, 期 3, 页码 422-436

出版社

JOHN WILEY & SONS INC
DOI: 10.1002/bip.10273

关键词

neuronal assemblies; imaging; voltage-sensitive dyes; visual perception, cortical states

向作者/读者索取更多资源

Spontaneous cortical activity of single neurons is often either dismissed as noise, or is regarded as carrying no functional significance and hence is ignored. Our findings suggest that such concepts should be revised. We explored the coherent population activity of neuronal assemblies in primary sensory area in the absence of a sensory input. Recent advances in real-time optical imaging based on voltage-sensitive dyes (VSDI) have facilitated exploration of population activity and its intimate relationship to the activity of individual cortical neurons. It has been shown by in vivo intracellular recordings that the dye signal measures the sum of the membrane potential changes in all the neuronal elements in the imaged area, emphasizing subthreshold synaptic potentials and dendritic action potentials in neuronal arborizations originating from neurons in all cortical layers whose dendrites reach the superficial cortical layers. Thus, the VSDI has allowed us to image the rather illusive activity in neuronal dendrites that cannot be readily explored by single unit recordings. Surprisingly, we found that the amplitude of this type of ongoing subthreshold activity is of the same order of magnitude as evoked activity. We also found that this ongoing activity exhibited high synchronization over many millimeters of cortex. We then investigated the influence of ongoing activity on the evoked response, and showed that the two interact strongly. Furthermore, we found that cortical states that were previously associated only with evoked activity can actually be observed also in the absence of stimulation, for example, the cortical representation of a given orientation may appear without any visual input. This demonstration suggests that ongoing activity may also play a major role in other cortical function by providing a neuronal substrate for the dependence of sensory information processing on context, behavior, memory and other aspects of cognitive function. (C) 2003 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据