4.6 Article

Increasing the volume of vascularized tissue formation in engineered constructs: An experimental study in rats

期刊

PLASTIC AND RECONSTRUCTIVE SURGERY
卷 111, 期 3, 页码 1186-1192

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/01.PRS.0000046034.02158.EB

关键词

-

类别

向作者/读者索取更多资源

The authors have previously described a model of in vivo tissue generation based on an implanted, microsurgically created vessel loop in a plastic chamber (volume, 0.45 ml) containing a poly(DL-lactic-co-glycolic acid) (PLGA) scaffold. Tissue grew spontaneously in association with an intense angiogenic sprouting from the loop and almost filled the chamber, resulting in a mean amount of tissue in chambers of 0.23 g with no added matrix scaffold and 0.33 g of tissue in PLGA-filled chambers after 4 weeks of incubation. The aim of the present study was to investigate whether a greater volume of tissue could be generated when the same-size vessel loop was inserted into a larger (1.9 ml) chamber. In four groups of five rats, an arteriovenous shunt sandwiched between two disks of PLGA, used as a scaffold for structural support, was placed inside a large polycarbonate growth chamber. Tissue and PLGA weight and volume, as well as histological characteristics of the newly formed tissue, were assessed at 2, 4, 6, and 8 weeks. Tissue weight and volume showed a strong linear correlation. Tissue weight increased progressively from 0.13 +/- 0.04 g at 2 weeks to 0.57 +/- 0.06 g at 6 weeks (p < 0.0005). PLGA weight decreased progressively from 0.89 +/- 0.07 g at 2 weeks to 0.20 +/- 0.09 g at 8 weeks (p < 0.0005). Histological examination of the specimens confirmed increased tissue growth and maturation over time. It is concluded that larger quantities of tissue can be grown over a longer period of time by using larger-size growth chambers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据