4.4 Article

QUASI-MIN-MAX MODEL PREDICTIVE CONTROL FOR IMAGE-BASED VISUAL SERVOING WITH TENSOR PRODUCT MODEL TRANSFORMATION

期刊

ASIAN JOURNAL OF CONTROL
卷 17, 期 2, 页码 402-416

出版社

WILEY
DOI: 10.1002/asjc.871

关键词

Quasi-min-max MPC; IBVS; TP model transformation; LMI

向作者/读者索取更多资源

This paper presents a novel image-based visual servoing (IBVS) controller based on quasi-min-max model predictive control (MPC). By transforming the image Jacobian matrix (i.e. interaction matrix) into a convex combination of linear time-invariant vertices form with the tensor-product (TP) model transformation method, the visual servoing system is represented as a polytopic linear parameter-varying (LPV) system. A robust controller is designed for the robotic visual servoing system subject to input and output constraints such as robot physical limitations and visibility constraints. The control signal is calculated online by carrying out the convex optimization involving linear matrix inequalities (LMIs) in model predictive control. The proposed visual servoing method avoids the inverse of the image Jacobian matrix and hence can solve the intractable problems for the classical IBVS controller, such as large displacements between the initial and the desired position of the camera. The ability of handling constraints can keep the image features in the boundary of the desired field of view (FOV). To verify the effectiveness of the proposed algorithm, the simulation results on a 6 degrees-of-freedom (DOF) robot manipulator with eye-in-hand configuration are presented and discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据