4.7 Article

Aspects of the cosmic microwave background dipole

期刊

PHYSICAL REVIEW D
卷 67, 期 6, 页码 -

出版社

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevD.67.063001

关键词

-

向作者/读者索取更多资源

Cosmic microwave background (CMB) experiments generally infer a temperature fluctuation from a measured intensity fluctuation through the first term in the Taylor expansion of the Planck function, the relation between the intensity in a given frequency and the temperature. However, with the forthcoming Planck satellite, and perhaps even with the Microwave Anisotropy Probe, the CMB-dipole amplitude will be large enough to warrant inclusion of the next higher order term. To quadratic order in the dipole amplitude, there is an intensity quadrupole induced by the dipole with a frequency dependence given by the second derivative of the Planck function. The Planck satellite should be able to detect this dipole-induced intensity quadrupole and distinguish it through its frequency dependence from the intrinsic CMB temperature and foreground quadrupoles. This higher-order effect provides a robust pre-determined target that may provide tests of Planck's and MAP's large-angle-fluctuation measurements and of their techniques for multifrequency foreground subtraction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据