4.7 Article

The benefits of ultrashort optical pulses in optically interconnected systems

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSTQE.2003.813317

关键词

CMOS integrated circuits; modelocked lasers; optoelectronic devices; optical interconnections; optical pulses; optical receivers; synchronization; wavelength division multiplexing

向作者/读者索取更多资源

Many properties of an optically interconnected system can be improved through the use of a modelocked laser. The short pulse duration, high peak power, wide spectral bandwidth, and low timing jitter of such a laser lead to these benefits. Timing advantages include simplified synchronization across large chip areas, receiver latency reduction, and data resynchronization. Lower power dissipation may be achieved through improved receiver sensitivity. Additional applications of short optical pulses include time-division multiplexing, single-source wavelength-division multiplexing, and precise time-domain testing of circuits. Several of these concepts were investigated using a high-speed chip-to-chip optical interconnect demonstration link. The link employs a modelocked laser and surface-normal optoelectronic modulators that were flip-chip bonded to silicon CMOS circuits. This paper outlines experiments that were performed on or simulated for the link, and discusses the important benefits of ultrashort optical pulses for optical interconnection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据