4.7 Article

Empirical modelling of shear strength of RC deep beams by genetic programming

期刊

COMPUTERS & STRUCTURES
卷 81, 期 5, 页码 331-338

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0045-7949(02)00437-6

关键词

reinforced concrete deep beams; genetic programming; empirical model building

向作者/读者索取更多资源

This paper investigates the feasibility of using genetic programming (GP) to create an empirical model for the complicated non-linear relationship between various input parameters associated with reinforced concrete (RC) deep beams and their ultimate shear strength. GP is a relatively new form of artificial intelligence, and is based on the ideas of Darwinian theory of evolution and genetics. The size and structural complexity of the empirical model are not specified in advance, but these characteristics evolve as part of the prediction. The engineering knowledge on RC deep beams is also included in the search process through the use of appropriate mathematical functions. The model produced by GP is constructed directly from a set of experimental results available in the literature. The validity of the obtained model is examined by comparing its response with the shear strength of the training and other additional datasets. The developed model is then used to study the relationships between the shear strength and different influencing parameters. The predictions obtained from GP agree well with experimental observations. (C) 2003 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据