4.4 Article

The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 89, 期 3, 页码 1519-1527

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00519.2002

关键词

-

资金

  1. NEI NIH HHS [R01 EY014978, R01 EY017039] Funding Source: Medline

向作者/读者索取更多资源

Neurons in the lateral intraparietal area of the monkey (LIP) have visual receptive fields in retinotopic coordinates when studied in a fixation task. However, in the period immediately surrounding a saccade these receptive fields often shift, so that a briefly flashed stimulus outside the receptive field will drive the neurons if the eye movement will bring the spatial location of that vanished stimulus into the receptive field. This is equivalent to a transient shift of the retinal receptive field. The process enables the monkey brain to process a stimulus in a spatially accurate manner after a saccade, even though the stimulus appeared only before the saccade. We studied the time course of this receptive field shift by flashing a task-irrelevant stimulus for 100 ms before, during, or after a saccade. The stimulus could appear in receptive field as defined by the fixation before the saccade (the current receptive field) or the receptive field as defined by the fixation after the saccade (the future receptive field). We recorded the activity of 48 visually responsive neurons in LIP of three hemispheres of two rhesus monkeys. We studied 45 neurons in the current receptive field task, in which the saccade removed the stimulus from the receptive field. Of these neurons 29/45 (64%) showed a significant decrement of response when the stimulus appeared 250 ms or less before the saccade, as compared with their activity during fixation. The average response decrement was 38% for those cells showing a significant (P < 0.05 by t-test) decrement. We studied 39 neurons in the future receptive field task, in which the saccade brought the spatial location of a recently vanished stimulus into the receptive field. Of these 32/39 (82%) had a significant response to stimuli flashed for 100 ms in the future receptive field, even 400 ms before the saccade. Neurons never responded to stimuli moved by the saccade from a point outside the receptive field to another point outside the receptive field. Neurons did not necessarily show any saccadic suppression for stimuli moved from one part of the receptive field to another by the saccade. Stimuli flashed <250 ms before the saccade-evoked responses in both the presaccadic and the postsaccadic receptive fields, resulting in an increase in the effective receptive field size, an effect that we suggest is responsible for perisaccadic perceptual inaccuracies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据