4.6 Article

Decoherence of a superconducting qubit due to bias noise

期刊

PHYSICAL REVIEW B
卷 67, 期 9, 页码 -

出版社

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevB.67.094510

关键词

-

向作者/读者索取更多资源

We calculate for the current-biased Josephson junction the decoherence of the qubit state from noise and dissipation. The effect of dissipation can be entirely accounted for through a semiclassical noise model that appropriately includes the effect of zero-point and thermal fluctuations from dissipation. The magnitude and frequency dependence of this dissipation can be fully evaluated with this model to obtain design constraints for small decoherence. We also calculate decoherence from spin echo and Rabi control sequences and show they are much less sensitive to low-frequency noise than for a Ramsey sequence. We predict small decoherence rates from 1/f noise of charge, critical current, and flux based on noise measurements in prior experiments. Our results indicate this system is a good candidate for a solid-state quantum computer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据