4.4 Article

High levels of intracellular cysteine promote oxidative DNA damage by driving the Fenton reaction

期刊

JOURNAL OF BACTERIOLOGY
卷 185, 期 6, 页码 1942-1950

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.185.6.1942-1950.2003

关键词

-

资金

  1. NIGMS NIH HHS [GM59030] Funding Source: Medline

向作者/读者索取更多资源

Escherichia coli is generally resistant to H2O2 with > 75% of cells surviving a 3-min challenge with 2.5 mM H2O2. However, when cells were cultured with poor sulfur sources and then exposed to cystine, they transiently exhibited a greatly increased susceptibility to H2O2 with <1% surviving the challenge. Cell death was due to an unusually rapid rate of DNA damage, as indicated by their filamentation, a high rate of mutation among the survivors, and DNA lesions by a direct assay. Cell-permeable iron chelators eliminated sensitivity, indicating that intracellular free iron mediated the conversion of H2O2 into a hydroxyl radical, the direct effector of DNA damage. The cystine treatment caused a temporary loss of cysteine homeostasis, with intracellular pools increasing about eightfold. In vitro analysis demonstrated that cysteine reduces ferric iron with exceptional speed. This action permits free iron to redox cycle rapidly in the presence of H2O2, thereby augmenting the rate at which hydroxyl radicals are formed. During routine growth, cells maintain small cysteine pools, and cysteine is not a major contributor to DNA damage. Thus, the homeostatic control of cysteine levels is important in conferring resistance to oxidants. More generally, this study provides a new example of a situation in which the vulnerability of cells to oxidative DNA damage is strongly affected by their physiological state.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据