4.7 Article

Temporal and cellular requirements for Fms signaling during zebrafish adult pigment pattern development

期刊

DEVELOPMENT
卷 130, 期 5, 页码 817-833

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/dev.00307

关键词

melanophore; xnathophore; pigment pattern; zebrafish; fms; csf1r; neural crest

资金

  1. NICHD NIH HHS [R01 HD40165] Funding Source: Medline
  2. NIGMS NIH HHS [R01 GM62182] Funding Source: Medline

向作者/读者索取更多资源

Ectothermic vertebrates exhibit a diverse array of adult pigment patterns. A common element of these patterns is alternating dark and light stripes each comprising different classes of neural crest-derived pigment cells. In the zebrafish, Danio rerio, alternating horizontal stripes of black melanophores and yellow xanthophores are a prominent feature of the adult pigment pattern. In fins mutant zebrafish, however, xanthophores fail to develop and melanophore stripes are severely disrupted. fins encodes a type III receptor tyrosine kinase expressed by xanthophores and their precursors and is the closest known homologue of kit, which has long been studied for roles in pigment pattern development in amniotes. In this study we assess the cellular and temporal requirements for Fms activity in promoting adult pigment pattern development. By transplanting cells between fms mutants and either wild-type or nacre mutant zebrafish, we show that fms acts autonomously to the xanthophore lineage in promoting the striped arrangement of adult melanophores. To identify critical periods for fms activity, we isolated temperature sensitive alleles of fins and performed reciprocal temperature shift experiments at a range of stages from embryo to adult. These analyses demonstrate that Fms is essential for maintaining cells of the xanthophore lineage as well as maintaining the organization of melanophore stripes throughout development. Finally, we show that restoring Fms activity even at late larval stages allows essentially complete recovery of xanthophores and the development of a normal melanophore stripe pattern. Our findings suggest that fms is not required for establishing a population of precursor cells during embryogenesis but is required for recruiting pigment cell precursors to xanthophore fates, with concomitant effects on melanophore organization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据