4.4 Article

Efficient turnover of chlorocatechols is essential for growth of Ralstonia eutropha JMP134(pJP4) in 3-chlorobenzoic acid

期刊

JOURNAL OF BACTERIOLOGY
卷 185, 期 5, 页码 1534-1542

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.185.5.1534-1542.2003

关键词

-

向作者/读者索取更多资源

Ralstonia eutropha JMP134(pJP4) degrades 3-chlorobenzoate (3-CB) by using two not completely isofunctional, pJP4-encoded chlorocatechol degradation gene clusters, tfdC(I)D(I)E(I)F(I) and tfdD(II)C(II)E(II)F(II). Introduction of several copies of each gene cluster into R. eutropha JMP222, which lacks pJP4 and thus accumulates chlorocatechols from 3-CB, allows the derivatives to grow in this substrate. However, JMP222 derivatives containing one chromosomal copy of each cluster did not grow in 3-CB. The failure to grow in 3-CB was the result of accumulation of chlorocatechols due to the limiting activity of chlorocatechol 1,2-dioxygenase (TfdC), the first enzyme in the chlorocatechol degradation pathway. Micromolar concentrations of 3- and 4-chlorocatechol inhibited the growth of strains JMP134 and JMP222 in benzoate, and cells of strain JMP222 exposed to 3 mM 3-CB exhibited a 2-order-of-magnitude decrease in viability. This toxicity effect was not observed with strain JMP222 harboring multiple copies of the tfdC(I) gene, and the derivative of strain JMP222 containing tfdC(I)D(I)E(I)F(I) plus multiple copies of the tfdC(I) gene could efficiently grow in 3-CB. In addition, tfdC(I) and tfdC(II) gene mutants of strain JMP134 exhibited no growth and impaired growth in 3-CB, respectively. The introduction into strain JMP134 of the xylS-xylXYZL genes, encoding a broad-substrate-range benzoate 1,2-dioxygenase system and thus increasing the transformation of 3-CB into chlorocatechols, resulted in derivatives that exhibited a sharp decrease in the ability to grow in 3-CB. These observations indicate that the dosage of chlorocatechol-transforming genes is critical for growth in 3-CB. This effect depends on a delicate balance between chlorocatechol-producing and chlorocatechol-consuming reactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据