4.8 Article

A biological hybrid model for collagen-based tissue engineered vascular constructs

期刊

BIOMATERIALS
卷 24, 期 7, 页码 1241-1254

出版社

ELSEVIER SCI LTD
DOI: 10.1016/S0142-9612(02)00506-9

关键词

tissue engineering; vascular graft; cross-linked collagen; mechanical testing

向作者/读者索取更多资源

Various approaches to tissue engineering a small diameter blood vessel have historically relied upon extended culturing periods and/or synthetic materials to create mechanical properties suitable to withstand the hemodynamic stresses of the vasculature. In this work, we present the concept of a construct-sleeve hybrid (CSH) graft, which uses a biological support to provide temporary reinforcement while cell-mediated remodeling of the construct occurs. Support sleeves were fabricated from Type I collagen gels and crosslinked with glutaraldehyde, ultraviolet, or dehydrothermal treatments. Uniaxial tensile testing of acellular sleeves revealed increased stiffness moduli and tensile stresses with crosslinking treatments. A second collagen layer containing cells was molded about the sleeve to create a CSH. After in vitro culture, CHSs with uncrosslinked (UnXL) and glutaraldehyde treated (Glut) sleeves exhibited significant increases in mechanical strength (20.4-fold and 121-fold increases in ultimate stress, respectively) compared to unreinforced control constructs. Burst testing produced similar findings with peak pressures of 100 and 650 mmHg in the UnXL and Glut CSHs, respectively. Construct compaction, cell viability, and histological examination demonstrated that the function of most cells remained unimpaired with the incorporation of the biological support sleeve. (C) 2002 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据