4.5 Article

Characterization of crystalline drug nanoparticles using atomic force microscopy and complementary techniques

期刊

PHARMACEUTICAL RESEARCH
卷 20, 期 3, 页码 479-484

出版社

KLUWER ACADEMIC/PLENUM PUBL
DOI: 10.1023/A:1022676709565

关键词

atomic force microscopy; nanoparticle; ultramicrotomy; scanning electron microscopy; light scattering

向作者/读者索取更多资源

Purpose. The purpose of this work was to image crystalline drug nanoparticles from a liquid dispersion and in a solid dosage form for the determination of size, shape, and distribution. Methods. Crystalline drug nanoparticles were adsorbed from a colloidal dispersion on glass for atomic force microscopy (AFM) imaging. Nanoparticles that were spray coated onto a host bead were exposed by ultramicrotomy for scanning electron microscopy and AFM examination. Results. The adsorbed drug nanoparticles were measured by AFM to have a mean diameter of 95 nm and an average aspect ratio of 1.3. Nanoparticles observed in the solid dosage form had a size and shape similar to drug nanoparticles in the dispersion. Particle size distribution from AFM measurement agreed well with data from field emission scanning electron microscopy, static light scattering, and X-ray powder diffraction. Conclusions. AFM is demonstrated to be a valuable tool in visualization and quantification of drug nanoparticle crystals in formulations. In addition to accurate size measurement, AFM readily provides shape and structural information of nanoparticles, which cannot be obtained by light scattering. Ultramicrotomy is a good sample preparation method to expose the interior of solid dosage forms with minimal structural alteration for microscopic examination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据