4.7 Article

Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta)

期刊

JOURNAL OF THE AMERICAN CERAMIC SOCIETY
卷 86, 期 3, 页码 437-440

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1151-2916.2003.tb03318.x

关键词

-

向作者/读者索取更多资源

Lithium metal oxides with the nominal composition Li5La3M2O12 (M = Nb, Ta), possessing a garnetlike structure, have been investigated with regard to their electrical properties. These compounds form a new class of solid-state lithium ion conductors with a different crystal structure compared with all those known so far. The materials are prepared by solid-state reaction and characterized by powder XRD and ac impedance to determine their lithium ionic conductivity. Both the niobium and tantalum members exhibit the same order of magnitude of bulk conductivity (similar to10(-6) S/cm at 25degreesC). The activation energies for ionic conductivity (<300degreesC) are 0.43 and 0.56 eV for Li5La3Nb2O12 and Li5La3Ta2O12, respectively, which are comparable to those of other solid lithium conductors, such as Lisicon, Li14ZnGe4O16. Among the investigated materials, the tantalum compound Li5La3Ta2O12 is stable against reaction with molten lithium. Further tailoring of the compositions by appropriate chemical substitutions and improved synthesizing methods, especially with regard to minimizing grain-boundary resistance, are important issues in view of the potential use of the new class of compounds as electrolytes in practical lithium ion batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据