4.4 Article

Direct experimental observation of the hydrogen-bonding network of a glycosidase along its reaction coordinate revealed by atomic resolution analyses of endoglucanase Cel5A

期刊

出版社

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S0907444902023405

关键词

-

向作者/读者索取更多资源

Non-covalent interactions between protein and ligand at the active centre of glycosidases play an enormous role in catalysis. Dissection of these hydrogen-bonding networks is not merely important for an understanding of enzymatic catalysis, but is also increasingly relevant for the design of transition-state mimics, whose tautomeric state, hydrogen-bonding interactions and protonation contribute to tight binding. Here, atomic resolution (similar to1 Angstrom) analysis of a series of complexes of the 34 kDa catalytic core domain of the Bacillus agaradhaerens endoglucanase Cel5A is presented. Cel5A is a 'retaining' endoglucanase which performs catalysis via the formation and subsequent breakdown of a covalent glycosyl-enzyme intermediate via oxocarbenium-ion-like transition states. Previous medium-resolution analyses of a series of enzymatic snapshots has revealed conformational changes in the substrate along the reaction coordinate (Davies et al., 1998). Here, atomic resolution analyses of the series of complexes along the pathway are presented, including the 'Michaelis' complex of the unhydrolysed substrate, the covalent glycosyl-enzyme intermediate and the complex with the reaction product, cellotriose. These structures reveal intimate details of the protein-ligand interactions, including most of the carbohydrate-associated H atoms and the tautomeric state of crucial active-centre groups in the pH 5 orthorhombic crystal form and serve to illustrate the potential for atomic resolution analyses to inform strategies for enzyme inhibition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据