4.6 Article

Nonvolatile electrical bistability of organic/metal-nanocluster/organic system

期刊

APPLIED PHYSICS LETTERS
卷 82, 期 9, 页码 1419-1421

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1556555

关键词

-

向作者/读者索取更多资源

Two-terminal electrical bistable devices have been fabricated using a sandwich structure of organic/metal/organic as the active medium, sandwiched between two external electrodes. The nonvolatile electrical bistability of these devices can be controlled using a positive and a negative electrical bias alternatively. A forward bias may switch the device to a high-conductance state, while a reverse bias is required to restore it to a low-conductance state. In this letter, a model to explain this electrical bistability is proposed. It is found that the bistability is very sensitive to the nanostructure of the middle metal layer. For obtaining the devices with well-controlled bistability, the middle metal layer is incorporated with metal nanoclusters separated by thin oxide layers. These nanoclusters behave as the charge storage elements, which enable the nonvolatile electrical bistability when biased to a sufficiently high voltage. This mechanism is supported by the experimental data obtained from UV-visible absorption spectra, atomic force microscopy, and impedance spectroscopy. (C) 2003 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据